Marine Application of Fiber Reinforced Composites

PDF Publication Title:

Marine Application of Fiber Reinforced Composites ( marine-application-fiber-reinforced-composites )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 027

J. Mar. Sci. Eng. 2020, 8, 26 27 of 28 25. Alexander, C. Evaluating the use of composite materials in reinforcing offshore risers using full-scale testing methods. In Proceedings of the ASME International Offshore Pipeline Forum, Houston, TX, USA; 2007; pp. 1–10. 26. Ochoa, O.; Salama, M. Offshore composites: Transition barriers to an enabling technology. Compos. Sci. Technol. 2005, 65, 2588–2596. [CrossRef] 27. Wood, C.A.; Bradley, W.L. Determination of the effect of seawater on the interfacial strength of an interlayer E-glass/graphite/epoxy composite by in situ observation of transverse cracking in an environmental SEM. Compos. Sci. Technol. 1997, 57, 1033–1043. [CrossRef] 28. Beyle, A.I.; Gustafson, C.G.; Kulakov, V.L.; Tarnopol’skii, Y.M. Composite risers for deep-water offshore technology: Problems and prospects. 1. Metal-composite riser. Mech. Compos. Mater. 1997, 33, 403–414. [CrossRef] 29. Reza, A.; Sedighi, H.M. Nonlinear Vertical Vibration of Tension Leg Platforms with Homotopy Analysis Method. Adv. Appl. Math. Mech. 2015, 7, 357–368. [CrossRef] 30. Tarnopol’skii, Y.M.; Kulakov, V.L.; Mungalov, D.D. Composites in offshore technology in the next century. Mech. Compos. Mater. 1999, 35, 365–372. [CrossRef] 31. Dorgant, P.L.; Balint, S.W.; Rodenbusch, G.; Luyties, W.H.; Rainey, R.M. System Selection for Deepwater Production Installations. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2001. 32. Salama, M.M.; Mercier, J.A. Aramid Composite Well Riser For Deep Water Offshore Structures. U.S. Patent 4,728,224, 16 July 1984. 33. Salama, M.M. Lightweight Materials for Mooring Lines of Deepwater Tension Leg Platforms. Mar. Technol. 1984, 21, 234–241. 34. Boothby, P.J.; Johnstone, C.D. Fibre-reinforced caissons for offshore applications. Compos. Struct. 1997, 38, 141–149. [CrossRef] 35. Laney, P. Use of Composite Pipe Materials in the Transportation of Natural Gas; Internl report for U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Idaho Operations Office Contract DE-AC07-99ID13727: Idaho Falls, ID, USA, 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.165.1163 (accessed on 25 March 2017). 36. Ellyin, F.; Wolodko, J.; Dorling, D.; Glover, A.; Jack, T. Fibre Reinforced Composites in Pipeline Applications: Design Issues and Current Research. In Proceedings of the 2000 3rd International Pipeline Conference, Calgary, AB, Canada, 1–5 October 2000. 37. Mork, G.; Barstow, S.; Kabuth, A.; Pontes, M.T. Assessing the Global Wave Energy Potential. In Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 6–11 June 2010; Volume 3, pp. 447–454. 38. Harper, P.; Hallett, S.; Fleming, A.; Dawson, M. Advanced fibre-reinforced composites for marine renewable energy devices. In Marine Applications of Advanced Fibre-Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 2016; pp. 217–232. 39. Grogan, D.M.; Leen, S.B.; Kennedy, C.R.; Ó Brádaigh, C.M. Design of composite tidal turbine blades. Renew. Energy 2013, 57, 151–162. [CrossRef] 40. Polagye, B.; Thomson, J. Screening for Biofouling and Corrosion of Tidal Energy Device Materials: In-Situ Results for Admiralty Inlet, Puget Sound, Washington; Northwest National Marine Renewable Energy Center, Report No 1; NNMREC: Seattle, WA, USA, 2010; 10p. 41. Jo, C.-H.; Kim, D.-Y.; Rho, Y.-H.; Lee, K.-H.; Johnstone, C. FSI analysis of deformation along offshore pile structure for tidal current power. Renew. Energy 2013, 54, 248–252. [CrossRef] 42. Hayman, B.; Wedel-Heinen, J.; Brøndsted, P. Materials Challenges in Present and Future Wind Energy. MRS Bull. 2008, 33, 343–353. [CrossRef] 43. Nicholls-Lee, R.F.; Turnock, S.R. Enhancing Performance of a Horizontal Axis Tidal Turbine using Adaptive Blades. In Proceedings of the OCEANS 2007—Europe, Aberdeen, UK, 18–21 June 2007; pp. 1–6. 44. Davies, P.; Germain, G.; Gaurier, B.; Boisseau, A.; Perreux, D. Evaluation of the durability of composite tidal turbine blades. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120187. [CrossRef] 45. Davies, P. Accelerated Aging Tests for Marine Energy Applications. In Durability of Composites in a Marine Environment; Springer: Berlin/Heidelberg, Germany, 2014; pp. 165–177.

PDF Image | Marine Application of Fiber Reinforced Composites

PDF Search Title:

Marine Application of Fiber Reinforced Composites

Original File Name Searched:

jmse-08-00026.pdf

DIY PDF Search: Google It | Yahoo | Bing

Development of a solar powered Electric Ship The Electricship website originally started off as a project to develop a comprehensive renewable, affordable, modular electric ship... More Info

Modular Boat Hull Composite The case for a unsinkable, modular composite hybrid boat hull... More Info

MS Burgenstock Hybrid Electric Catamaran Lake Lucerne Unique shuttle servicing Lucerne to the Burgenstock Resort... More Info

Ground Power Unit GPU Powered by Lithium Ion Batteries The goal of the Ground Power Unit is to provide a readily accessible, modular, ready-to-power solution for remote power... More Info

CONTACT TEL: 608-238-6001 Email: greg@electricship.com (Standard Web Page)