PDF Publication Title:
Text from PDF Page: 016
ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Perspective (81) Lahvis, M. A.; Baehr, A. L. Estimation of Rates of Aerobic Hydrocarbon Biodegradation by Simulation of Gas Transport in the Unsaturated Zone. Water Resour. Res. 1996, 32 (7), 2231−2249. (82) Starnecker, A.; Menner, M. Assessment of Biodegradability of Plastics under Simulated Composting Conditions in a Laboratory Test System. Int. Biodeterior. Biodegrad. 1996, 37 (1), 85−92. (83) HS 2001 Biodegradability Test. Hong Kong Environmental Protection Department, 2001; p 17. https://www.wastereduction.gov. hk/sites/default/files/en/materials/info/container/HS_2001.pdf (ac- cessed Feb 2020). (84) Kijchavengkul, T.; Auras, R.; Rubino, M.; Ngouajio, M.; Thomas Fernandez, R. Development of an Automatic Laboratory- Scale Respirometric System to Measure Polymer Biodegradability. Polym. Test. 2006, 25 (8), 1006−1016. (85) Kunioka, M.; Ninomiya, F.; Funabashi, M. Biodegradation of Poly(Butylene Succinate) Powder in a Controlled Compost at 58 °C Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855−2 Method. Int. J. Mol. Sci. 2009, 10 (10), 4267−4283. (86) Yagi, H.; Ninomiya, F.; Funabashi, M.; Kunioka, M. Anaerobic Biodegradation Tests of Poly(Lactic Acid) under Mesophilic and Thermophilic Conditions Using a New Evaluation System for Methane Fermentation in Anaerobic Sludge. Int. J. Mol. Sci. 2009, 10 (9), 3824−3835. (87) De Wilde, B. Biodegradation Testing Protocols. In Degradable Polymers and Materials: Principles and Practice, 2nd ed.; Khemani, K., Scholz, C., Eds.; ACS Symposium Series 1114; American Chemical Society: Washington, DC, 2012; pp 33−43. DOI: 10.1021/bk-2012- 1114.ch003. (88) Strotmann, U.; Reuschenbach, P.; Schwarz, H.; Pagga, U. Development and Evaluation of an Online CO2 Evolution Test and a Multicomponent Biodegradation Test System. Appl. Environ. Micro- biol. 2004, 70 (8), 4621−4628. (89) Yabannavar, A. V.; Bartha, R. Methods for Assessment of Biodegradability of Plastic Films in Soil. Appl. Environ. Microbiol. 1994, 60 (10), 3608−3614. (90) Castellani, F.; Esposito, A.; Stanzione, V.; Altieri, R. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus. Adv. Mater. Sci. Eng. 2016, 2016, 6909283. (91) Calmon, A.; Dusserre-Bresson, L.; Bellon-Maurel, V.; Feuilloley, P.; Silvestre, F. An Automated Test for Measuring Polymer Biodegradation. Chemosphere 2000, 41 (5), 645−651. (92) Lefaux, S.; Manceau, A.; Benguigui, L.; Campistron, I.; Laguerre, A.; Laulier, M.; Leignel, V.; Tremblin, G. Continuous Automated Measurement of Carbon Dioxide Produced by Micro- organisms in Aerobic Conditions: Application to Proteic Film Biodegradation. C. R. Chim. 2004, 7 (2), 97−101. (93) Kale, G.; Auras, R.; Singh, S. P. Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. J. Polym. Environ. 2006, 14 (3), 317−334. (94) Bandyopadhyay, P. K.; Shaw, M. T.; Weiss, R. A. Detection and Analysis of Aging and Degradation of Polyolefins: A Review of Methodologies. Polym.-Plast. Technol. Eng. 1985, 24 (2−3), 187−241. during Degradation in Soils Estimated by FT-IR and NMR. Soil Sci. Plant Nutr. 2002, 48 (4), 469−473. (100) Bennett, R. L.; Keller, A.; Stejny, J.; Murray, M. Study of the Direct Detection of Crosslinking in Hydrocarbons by 13C-NMR. II. Identification of Crosslink in Model Compound and Application to Irradiated Paraffins. J. Polym. Sci., Polym. Chem. Ed. 1976, 14 (12), 3027−3033. (101) Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K. H. An Overview of Degradable and Biodegradable Polyolefins. Prog. Polym. Sci. 2011, 36 (8), 1015−1049. (102) Celina, M.; Ottesen, D. K.; Gillen, K. T.; Clough, R. L. FTIR Emission Spectroscopy Applied to Polymer Degradation. Polym. Degrad. Stab. 1997, 58 (1−2), 15−31. (103) Moldovan, A.; Pa, S.; Buican, R.; Tierean, M. Characterization of Polyolefins Wastes by FTIR Spectroscopy. Bull. Transilvania Univ. Brasov, Ser. I 2012, 5 (54), 65−72. (104) Ioakeimidis, C.; Fotopoulou, K. N.; Karapanagioti, H. K.; Geraga, M.; Zeri, C.; Papathanassiou, E.; Galgani, F.; Papatheodorou, G. The Degradation Potential of PET Bottles in the Marine Environment: An ATR-FTIR Based Approach. Sci. Rep. 2016, 6, 23501. (105) Reddy, M. M.; Gupta, R. K.; Gupta, R. K.; Bhattacharya, S. N.; Parthasarathy, R. Abiotic Oxidation Studies of Oxo-Biodegradable Polyethylene. J. Polym. Environ. 2008, 16 (1), 27−34. (106) Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Degradability of Linear Polyolefins under Natural Weathering. Polym. Degrad. Stab. 2011, 96 (4), 703−707. (107) Rouillon, C.; Bussiere, P.-O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.-L. Is Carbonyl Index a Quantitative Probe to Monitor Polypropylene Photodegradation? Polym. Degrad. Stab. 2016, 128, 200−208. (108) Weikart, C. M.; Yasuda, H. K. Modification, Degradation, and Stability of Polymeric Surfaces Treated with Reactive Plasmas. J. Polym. Sci., Part A: Polym. Chem. 2000, 38 (17), 3028−3042. (109) Biresaw, G.; Carriere, C. J. Correlation between Mechanical Adhesion and Interfacial Properties of Starch/Biodegradable Polyester Blends. J. Polym. Sci., Part B: Polym. Phys. 2001, 39 (9), 920−930. (110) Suresh, B.; Maruthamuthu, S.; Kannan, M.; Chandramohan, A. Mechanical and Surface Properties of Low-Density Polyethylene Film Modified by Photo-Oxidation. Polym. J. 2011, 43 (4), 398−406. (111) Strapasson, R.; Amico, S. C.; Pereira, M. F. R.; Sydenstricker, T. H. D. Tensile and Impact Behavior of Polypropylene/Low Density Polyethylene Blends. Polym. Test. 2005, 24 (4), 468−473. (112) M, Z.; S, M. Z. H. Biodegradability and Tensile Properties of Compatibilized Polyethylene/Rice Bran Film. Chem. Eng. Trans. 2017, 919−924. (113) Li, Y.; Chu, Z.; Li, X.; Ding, X.; Guo, M.; Zhao, H.; Yao, J.; Wang, L.; Cai, Q.; Fan, Y. The Effect of Mechanical Loads on the Degradation of Aliphatic Biodegradable Polyesters. Regen. Biomater. 2017, 4 (3), 179−190. (114) Mano, J. F.; Koniarova, D.; Reis, R. L. Thermal Properties of Thermoplastic Starch/Synthetic Polymer Blends with Potential Biomedical Applicability. J. Mater. Sci.: Mater. Med. 2003, 14 (2), 127−135. (95) Crowther, J. A.; Johnson, J. F.; Tanaka, J. Molecular Weight Distribution Studies of Electrically Stressed Polyethylene. In Durability of Macromolecular Materials; Eby, R. K., Eds.; ACS Symposium Series 95; American Chemical Society: Washington, DC,1979;pp421−431.DOI:10.1021/bk-1979-0095.ch029. (116)Priselac,D.;Tomasěgovic,́T.;MahovićPoljacěk,S.;Cigula, (96)Barbes,̧L.;Rad̆ulescu,C.;Stihi,C.ATR-FTIRSpectrometry Characterisation of Polymeric Materials. Romanian Rep. Phys. 2014, 66 (3), 765−777. (97) Bovey, F. A.; Mirau, P. A. NMR of Polymers; Academic Press: San Diego, 1994. (98) Schmidt-Rohr, K.; Spiess, H. W. Multidimensional Solid-State NMR and Polymers; Academic Press: London, 1996. (99) Hoshino, A.; Tsuji, M.; Fukuda, K.; Nonagase, M.; Sawada, H.; Kimura, M. Changes in Molecular Structure of Biodegradable Plastics T.;Leskovac,M.Thermal,SurfaceandMechanicalPropertiesof PCL/PLA Composites with Coconut Fibres as an Alternative Material to Photopolymer Printing Plates. Teh. Glas. 2017, 11 (3), 111−116. (117) Raghavan, D.; Torma, A. E. DSC and FTIR Characterization of Biodegradation of Polyethylene. Polym. Eng. Sci. 1992, 32 (6), 438−442. (118) Odusanya, S. A.; Nkwogu, J. V.; Alu, N.; Etuk Udo, G. A.; Ajao, J. A.; Osinkolu, G. A.; Uzomah, A. C. Preliminary Studies on https://dx.doi.org/10.1021/acssuschemeng.9b06635 3509 (115) Nanda, P. K.; Lochan Nayak, P.; Krishna Rao, K. Thermal Degradation Analysis of Biodegradable Plastics from Urea-Modified Soy Protein Isolate. Polym.-Plast. Technol. Eng. 2007, 46 (3), 207− 211. ACS Sustainable Chem. Eng. 2020, 8, 3494−3511PDF Image | Degradation Rates of Plastics in the Environment
PDF Search Title:
Degradation Rates of Plastics in the EnvironmentOriginal File Name Searched:
acssuschemeng-9b06635.pdfDIY PDF Search: Google It | Yahoo | Bing
Development of a solar powered Electric Ship The Electricship website originally started off as a project to develop a comprehensive renewable, affordable, modular electric ship... More Info
Modular Boat Hull Composite The case for a unsinkable, modular composite hybrid boat hull... More Info
MS Burgenstock Hybrid Electric Catamaran Lake Lucerne Unique shuttle servicing Lucerne to the Burgenstock Resort... More Info
Ground Power Unit GPU Powered by Lithium Ion Batteries The goal of the Ground Power Unit is to provide a readily accessible, modular, ready-to-power solution for remote power... More Info
CONTACT TEL: 608-238-6001 Email: greg@electricship.com (Standard Web Page)